Breaking down the wall between quant and qual
11/15/17 / Molly Hagan
Recently we had a project involving a large survey with numerous open-end questions. Taking the divide and conquer approach, it was all hands-on deck to quickly code the thousands of responses. As a qualitative researcher, coding survey responses can feel like a foreign process and I often found myself overthinking both my codes and the nuanced content of responses. When I had finished, I typed up a summary of my findings and even pulled out a few ‘rock star’ quotes that illustrated key trends and takeaways. The experience left me wondering—why is content analysis of survey open-ends not more common? It is qualitative data after all.
Simply put, the purpose of content analysis is the elicitation of themes or content in a body of written or other pointed media. Like many qualitative approaches, it does not produce numerical measurements; rather, content analysis measures patterns and trends in the data. Incorporating qualitative analysis techniques such as content analysis into traditionally quantitative studies better contextualizes survey results and produces greater insights.
Imagine a classic branding survey where participants are asked sentiment questions such as ‘what is your impression of Brand X’? Often, the questions are designed as a Likert scales with defined categories (e.g. very positive, somewhat positive, neutral, etc.). While this provides general insight into attitudes and impressions of the brand, it does not necessarily highlight the broader insights or implications of the research findings. When Corona does a brand survey, we regularly ask an open-end question for qualitative content analysis as a follow-up, such as ‘What specifically about Brand X do you find appealing?’ or, conversely, ‘What specifically about Brand X do you find unappealing?’. Inclusion of qualitative follow-up provides additional framing to the quantitatively designed Likert scale question and augments insights. Additionally, if the survey shows a sizeable negative sentiment towards a brand, incorporating qualitatively designed open-ends can uncover issues or problems that were unknown prior to the research, and perhaps outside of the original research scope.
Historically, quantitative and qualitative research has been bifurcated, both in design and in analysis. However, hybrid approaches such as the one described above are quickly gaining ground and the true value is being realized. Based on our experience here at Corona, for content analysis to be effectively done in a quantitative-dominant survey, it is best for this to be decided early in the research design phase.
A few things to keep in mind when designing open-ended questions for content analysis:
- Clearly define research objectives and goals for the open-end questions that will be qualitative analyzed.
- Construct questions with these objectives in mind and incorporate phrasing the invites nuanced responses.
- Plainly state your expectations for responses and if possible, institute character minimums or maximums as needed.
In addition to the points mentioned above, it is important to note that there are some avoidable pitfalls. First off, this method is best suited for surveys with a smaller sample size, preferably under 1000 respondents. Also, the survey itself must not be too time intensive. It is well known that surveys which extend beyond 15 to 20 minutes often lead to participants dropping out or not fully completing the survey. Keep these time limits in mind and be selective about the number of open-ends to be include. Lastly, it is important to keep the participant engaged in the survey. If multiple open-ends are incorporated in to the survey, phrase the questions differently or ask them about different topics in an effort to keep participants from feeling as though they are repeating themselves.
In an ideal world, quantitative and qualitative approaches could meld together seamlessly, but we all know this isn’t an ideal world. Time constraints, budgets, research objectives are just a handful of reasons why a hybrid approach such as the one discussed here may not be the right choice. If it is though, hybrid approaches provide participants an opportunity to think deeper about the topic at hand and also can create a sense of active engagement between the participant and the end-client. In other words—they feel like their voice is being heard and the end-client gains a better understanding of their customer.